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Abstract

Background: Neural stem cells (NSC) produce neurons and surrounding glial cells in the brain. The neurons and the glial cells can 
be regenerated with the further understanding of the mechanism of neural crest cells. Molecules that form a complex called STRIPAK 
(Striatin Interacting Phosphatase and Kinase) like Mob4 (Monopolar spindle-one binder family member 4), Cka (Connector of kinase 
to AP1) and PP2A (Protein Phosphatase 2A/Microtubular star, Mts) that promote reactivation in NSCs. 

Aim of the Study: To determine how the NSCs work and the role of STRIPAK to make the NSCs either dormant or reactivate them. 

Research Question: Is STRIPAK, actually significant in reactivating sleeping brain cells? 

Materials and Methods: With taking Medline as a source of research data, articles were selected having undergone randomized 
controlled trials. Out of these, articles (studies) were chosen which met the criterion for systematic review. 

Result: Identification of STRIPAK complex members i.e. Mob4, Cka, and PP2A/Mts;When Mob4 is lost, automatically NSC reactiva-
tion is prevented; Mob4 takes care and regulates Hippo pathway and Insulin like receptor cascade (InR/PI3K/Akt) activity in NSCs; 
Mob4 and Cka act together to reactivate NSCs and hence form a PP2A-Hippo Complex; PP2A inactivates Akt (protein kinaseB) inde-
pendently of STRIPAK Cka and Mob4 members and maintains quiescent NSCs. 

Keywords: Neural Stem Cells (NSC); STRIPAK (Striatin Interacting Phosphatase and Kinase); Mob4 (Monopolar Spindle-One Binder 
Family Member 4); PP2A (Protein Phosphatase 2A/Microtubular Star, Mts)

Introduction
The practicality and usage of stem cells today is the hotspot of 

research arena. As all of us are aware that the formation of new 
neurons and the glial cells by the neural stem cells helps repair 
the brain homeostasis and any other kind of damage to the brain 

[1,2]. The human neural stem cells are predominantly found in the 
Hippocampus and Olfactory bulb area of the brain [3]. The Sub ven-
tricular zone of the forebrain is the most active neurogenetic area 
and the richest source of neural stem cells. Neural stem cells reac-
tivate only post embryonically and stay dormant until the end of 
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embryogenesis only to generate neurons and glia of the adult brain 
[4]. Understanding the mechanism of neural stem cells can help us 
with therapies that include the glial cells [5]. Hence the aim of the 
study is to determine how neural stem cells work and the role of 
STRIPAK as a switch to turn off dormancy/ quiescence and turn on 
reactivation, with the research question in mind that, “Is STRIPAK 
actually significant in reactivating sleeping brain cells?” 

Aim of the Study
To determine how the NSCs work and the role of STRIPAK to 

make the NSCs either dormant or reactivate them. 

Research Question
Is STRIPAK, actually significant in reactivating sleeping brain 

cells? 

Materials and Methods
Many researches and studies have determined that STRIPAK 

is 100% sensitive and specific [6,7]. Taking the fact into consider-
ation, a literature based systematic review was done to complete 
the aim with which we started the study. With the Cochrane col-
laboration taken as reference, about 30 research articles having 
undergone Randomized controlled trials were chosen for the study, 
out of which 27 articles were finally selected for having undergone 
the criterion for systematic review.

Results
The actual need for this systematic review was laid down on the 

foundation of the following conclusions which were drawn from 
the final 27 articles.

 The results suggest that the NSC reactivation is based on some 
of the conserved genes which were exposed due to single cell tran-
scriptome analysis [8]. The analysis reveals transcripts encoding 
for some of the core STRIPAK complex members: 

• Mob4 (Monopolar spindle-one binder family member4) 

• Cka (Connector of kinase to AP1), which is the sole Drosoph-
ila striatin [9] protein A catalytic subunit of PP2A (Protein 
Phosphatase 2A/Microtubular star Mts).

Thereby stating that STRIPAK is actually significant [10,11] in 
reactivating the sleeping brain cells, thereby reaffirming our re-
search question. 

Discussion
Recent advances in profiling of the quiescent and NSCs are in-

creasing our understanding regarding these cells [12-14]. Some of 
the common approaches include brain tissue disassociation [15], 
cell sorting and culture procedures. The balance between dorman-
cy and reactivation of the NSCs is mainly due to neural replenish-
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ment. Here, in the below picture, a sample of the brain from live 
drosophila considered. It shows the transcript profile between 
single quiescent versus reactivating NSCs [16,17].

Figure 4

Both quiescence and reactivation in drosophila is dependent 
on the niche signals. The quiescence in NSC by the niche glia cells 
is maintained by hippo signaling activation [18,19]. It also proves 
that the insulin and insulin like growth factor pathway also helps in 
NSC reactivation. Hence, here, the STRIPAK members i.e. Mob4, Cka 
and PP2A phosphatase were identified in the analysis. They help in 
the regulation of NSC quiescence so that they can proceed to the re-
activation states and also function as the intrinsic molecular switch 
in mechanism of InR/PI3k/Akt and Hippo signals [20,21].

The catalytic subunit of PP2A, i.e. Mts helps maintaining NSCs 
in quiescence, which further prevents the premature phosphoryla-
tion of Akt, which is supposed to be a very important component of 
InR/PI3k/Akt signaling cascade. 

Where Mts down regulates the transcript level, Mob4 and Cka 
up regulates in reacting/s quiescent NSCs. Mob4 and Cka are both 
very large complexes that are present in fungi to humans contain-
ing PPA2. The under expression of these proteins leads to impair-
ment of NSC reactivation, but if overexpressed, they can lead to ac-
celeration of the NSCs [22,23].

STRIPAK/PP2A stops Drosophila Hippo kinase activity via de-
phosphorylation as it is connected with the hippo in drosophila 
and mammalian cells [24]. It has been seen that there is cross in-
hibition between Hippo and InR/PI3K/Akt pathways in both mam-
malian and Drosophila tissues. Hence, for the physical association 
of Mts to Hippo and its subsequent inhibition, both Mob4 and Cka 
are required as reported. PP2A/Mts protein is assembled by the 
hippo kinase to inactivate the hippo signaling when the Mob4 and 
Cka start increasing in the NSCs. This can end up turning on the 
InR/PI3K/Akt and hence behaving as a molecular switch to turn 
off Hippo signaling.

Figure 5

Conclusion
STRIPAK (Striatin interacting phosphatase and kinase) com-

plexes play a crucial role in protein dephosphorylation and also 
regulates vital signaling pathways like Hippo, Nuclear receptor, 
MAPK (Mitogen-activated protein kinase) and Cytoskeleton re-
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modeling. The STRIPAK complex members that were identified 
in the Analysis: Mob4, Cka, PP2A/Mts played a significant role 
in maintaining dormancy/quiescence or turn-on reactivation of 
Neural stem cells (NSC’s). The STRIPAK-PP2A complex containing 
Mob4 and Cka was found to inhibit Hippo signalling [24] in Dro-
sophila and Mammalian brain cells. The NSC quiescence is done 
by inactivating Akt where the PP2A/Mts with its regulatory unit 
Widerborst contributes in the act. Conversely, Mob4 along with Cka 
aid in forming PP2A-Hippo complex with subsequent Hippo path-
way inhibition resulting in reactivation of Neural Stem Cells. Over-
expression of Mob4 or its human ortholog MOB4 (hMOB4, also 
called as Phocein) accelerates Neural Stem Cell reactivation. Thus, 
increased Mob4 levels accelerate NSC reactivation. Hence, Mob4 
functions primarily to promote Neural Stem Cell reactivation [25].

The Hippo pathway play a significant role in Angiogenesis, regu-
late vascular remodeling and maintain NSCs in dormancy/quies-
cence. Conversely, activation of Insulin like receptor cascade (InR/
PI3K/Akt) results in Neural Stem cell reactivation. When the insu-
lin receptors are activated, they get the PI3K to the cell membrane, 
which in turn gets Akt protein kinase which is activated by phos-
phorylation. Therefore, activation of (Insulin like receptor) InR/
PI3K/Akt or inhibition of Hippo pathway triggers reactivation of 
Neural Stem Cells [26]. 

The Mob4 and Cka play a significant role in protein dephosphor-
ylation by negatively regulating Hippo signaling pathway via the 
dephosphorylation of Hippo kinase by PP2A phosphatases. Also, 
depletion of the STRIPAK members reduces the function of Hippo/
Mts binding resulting in increased Hippo activation. Hence, it can 
be said that the Hippo signaling pathway is inactivated by Mob4 
and Cka which promote the NSC reactivation and are required for 
the PP2A-Hippo complex formation. A prolonged Mts inhibition 
can be thought of if PP2A/Mts would be functioning only in NSC 
quiescence. But PP2A acts negatively on the insulin receptor signal-
ing cascade, and on the dephosphorylation of Akt as well. Thus, the 
STRIPAK complex members, Mob4 and Cka targets PP2A/Mts to 
Hippo, inhibiting Hippo signaling pathway plus activation of InR/
PI3K/Akt cascade promoting Neural Stem Cell reactivation. 

The different types of STRIPAK complexes are involved in vari-
ous biological processes such as cell signaling, cell cycle control, 
apoptosis, cell migration, and tumorigenesis, neural and vascular 
development [27]. Hence, the STRIPAK (Striatin interacting phos-

phatase and kinase) complexes do have more number of functions 
and dysregulation of these complexes are linked to clinical condi-
tions such as cancer. It is of sole importance to determine the role 
of STRIPAK proteins in regulating other stem cells in the hope of 
arriving at a potential cure to various clinical conditions for the 
benefit of mankind.
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